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Abstract: In this paper, the results of seasonal modeling and subsequent forecasting
of Sokoto monthly average temperature have been obtained using seasonal
autoregressive integrated moving average modeling approach. Based on this seasonal
modeling analysis, we conclude that the SARIMA(l,0,0)(0,1,1)12 ,SARIMA
(3,0,1)(4,1,0)12 and SARlMA (4,0,2)(5,1,1)12 models are adequate for a good
description of temperature in Sokoto. We further asses their forecastibility from the
out-of-sample forecast statistic, Results show that for the short forecast statistics
SARlMA (3,0,1)(4, I ,0) 12 model minimizes the mean squares error of the forecast,
while the middle forecast and long forecast statistics results have shown that
SARlMA (4,0,2)(5, I, I) 12 model has optimal forecast to the Sokoto temperature,
hence this models have the advantage of capturing and describing and forecasting
the seasonal dynamics of Sokoto city temperature.
Key Words: Seasonality, SARIMA, Identification, Estimation, Diagnostics test, and
forecasting.

INTRODUCTION
Sokoto is a city located in the extreme northwest of Nigeria. The location of Sokoto in
Nigeria is at Latitude 13°02 N and Longitude 05° 15 E. Sokoto State is in the dry Sahel,
surrounded by sandy Savannah and isolated hills. Sokoto as a whole is very hot area. The
wannest months are February to April when daytime temperature is rising. The raining
season is from June to October during which showers are a daily occurrence. From late
October to February, during the cold season, the climate is dominated by the Hamattan
wind blowing Sahara dust over the land. The dust dims the sunlight there by lowering
temperatures significantly and also leading to the inconvenience of dust everywhere in
houses.
Seasonality modeling is a major interested area in Univariate time series modeling. These
models have the advantage that behavioral patterns can be predicted simply by analyzing
the past history of a variable, reflecting these patterns. The most important aspect of
building such a model is learning about the intrinsic time patterns of a variable or its
underlying generating process.
Seasonality is the systematic although not necessarily regular, intra-year movement
caused by the changes of weather, the calendar, and timing of decisions, directly or
indirectly through the production and consumption decisions made by the agents of the
economy (Hylleberg, 1990). These decisions are influenced by endowments, the
expectations and preferences ofthe agents, and the production techniques available in the
economy. Such seasonal patterns can be observed for many macroeconomic time series
like gross domestic product, unemployment, weather, industrial production or
construction. Temperature is indispensable for sustaining life. Even a brief rise and
falling of it can cause a serious effect on human and his economic activities. However, the
term seasonality is also used in a broader sense to characterize time series that show
specific patterns that regularly recur within fixed time intervals (e.g. a year, a month or a
week). For example it is very cold and dusty during the hamattan period compared to
other time period within the year and this pattern will be the same for each year.
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Statistical Software: We used ASTSA and Gretl (version 6.0) for the analysis. These
softwares are also used to plot the graphs and the autocorrelation function

SARIMAMODELLING
The multiplicative seasonal autoregressive integrated moving average model, SARlMA
is denoted by SARIMA v (P,d,q) (P,D,Q)s (Box and Jenkins 1976), where P denotes
the number of autoregressive terms, q denotes the number of moving average terms and
d denotes the number of times a series must be differenced to induce stationarity. P
denotes the number of seasonal autoregressive components, denotes the number of
seasonal moving average terms and D denotes the number of seasonal differences
required to induce stationarity and is the period. The seasonal autoregressive integrated
moving average model has the following representation:

(2.01)

where:
a is a constant,

{e.}is a sequence of uncorrelated normally distributed random variables
with the same mean ( 11 ) and the same variance (J2)

L is the lag operator defined by
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The selection of the appropriate seasonal ARIMA model for the data is achieved by an
iterative procedure based on three steps (Box etal, 1994). This is shown in fig2.01 :
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Fig 2.01: Flow chart illustrating modeling strategies

Model Identification

The Model Identification stage enables us to select a subclass of the family of SARIMA

models appropriate to represent a time series. This involves stationary transformation,

regular differencing, seasonal differencing and the Unit root and Stationarity tests (ADF,

KPSS and HYGY).
Stationary transformations: Our task here is to identify if the time series could have
been generated by a stationary process. First, we use the time plot of the series to analyze
ifit is variance stationary. The series departs from this property when the dispersion ofthe
data varies with time. In this case, the stationarity in variance is achieved by applying the
appropriate Box- Cox transformation (Box and Jenkins, 1976):

{

XA_l

X(A)= T
I 1IXX,)

(A)

And as a result, we get the series. XI
In some cases, especially when variability increases with level, such series can be
transformed to stabilize the variance before being modeled with the Univariate Box and
Jenkins method. A common
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transformation involves taking the natural logarithms of the original series. The second part is the
analysis of the stationarity in mean. The instruments are the time plot, the sample correlograms
(ACF and PACF) and the tests for unit roots and stationarity. The path of a nonstationary series
usually shows an upward or downward slope or jumps in the level whereas a stationary series
moves around a unique level along time. The sample autocorrelations of stationary processes are
consistent estimates of the corresponding population coefficients, so the sample correlograms of
stationary processes go to zero for moderate lags.
When the series shows nonstationary patterns, we should take first differences and analyze

I ,

ifM?') is stationary or not in a similar way. This process of taking successive differences will

continue until a stationary time series is achieved.

Regular differencing : To difference a data series, we define a new variable (WI) which is the
change in Z/ from one time period to the next; that is,

~ = (1- L)Z/ = Z/ - Z/_; t = 1,2, ... ,n (2.02)

This working series" ~ is called the first difference of'e.. If the first differences do not have a

constant mean, we might try a new WI, which will be the second differences of'Z, , that is:

~ = (Z/ -Z/_I)-(Z/_I -Z/_2) = Z/ -2Z/_1 +Z/_2'
Using the lag operator as shorthand (1-L) is the differencing operator since
(1- L )Z/ = Z/ - Z/_I. Then, in general, ~ = (1- L)d Z/ is a d-th order regular difference. That
is, d denotes the number of nonseasonal differences.
Seasonal differencing: For seasonal models, seasonal differencing is often useful. For example,

~ = (1- £2 )Z/ = Z/ - Z/_12 (2.03)
Equation (2.03) is a first-order seasonal difference with period 12, as would be used for monthly
data with 12 observations per year. Rewriting (2.03) and using successive resubstitution (i.e.,
using ~-12 = Z/_12- Z/_24) gives

Z/ =Z/_12 +~
= Z/_12+ ~-12 +~
= Z/-36 + ~-24 + ~-12 +~

and so on. This is a kind of "seasonal integration ", in general '~ = (1- E)D Z/ is a Dth order
seasonal difference with period S where D denotes the number of seasonal differences.

Unit Roots and Stationarity: Because the order of integration of a time series is of great
important for the analysis, a number of statistical tests have been developed for investigating it. In
this case, we have to test the data, to know the level or if there is any need for seasonal and
nonseasonal differencing before modeling the data. The following are the unit roots and
stationarity tests:

?Augmented Dickey-Fuller (ADF) Test
This test was first introduced by Dickey and Fuller (1979) to test for the presence
of unit root(s). The regression model for the test is given as:
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p-l

~ =<t>~-l+La;~-j +Ut
j=l

in this model the pair of hypothesis
Ho :<\>= 0 Versus HI :<\>< 0

Ho is rejected if the t-statistics is smaller than the relevant p-values (critical
value). If<\>=0 (that is, under Ho) the series X, has a unit root and is
nonstationary, whereas it is regarded as stationary if the null hypothesis is
rejected:

? KPSS Test
This test (KPSS) has been proposed by Kwiatkowski et al (1992) where the
hypothesis that the Data generating process (DGP) is stationary is tested
against a unit root. The Data generating process is given by
X, =Y, +Z,

where Y, = AIY,_I +_ .. +ApYI_p +VI

They proposed the following statistics:
1 T S2

T-statistic (tk) = -2 I -fz
T I-I Goo

Where SI2 is the partial sum of the residuals, c5~ is the long run variance.

Accept Ho when the t-statistics is less than the critical value, that is, XI is

stationary. Reject Ho for large values of tk (i.e. tk > cr), XI has a unit root.
? Seasonal Unit root (Hegy test)

This test has been proposed by hylleberg et al (1990) to check for seasonal
unit root. For monthly time series, Frances (1990) discussed the test for
seasonal unit root based on the model

(2.04)

(2.05)

VI : i.i.d(O,G:)

+1'[6Z4,1_2 +1'[7Z5,1_1 +1'[8Z5,1_2 +1'[9Z6,1_1

+1'[6Z4,1_2 +1'[7Z5,1_1 +1'[8Z5,1_2 +1'[9Z6,1_1

+1'[ IOZ61-2 + 1'[IIZ7 I_I + 1'[12Z7 1-2 + "p a~~12XI_ . + UI, , , ~j=1 J J

The number of lagged seasonal differences ~4XI_ j has to be chosen before

the HEGY test can be performed. The process XI has a regular (zero

frequency) unit root if 1'[ I = ° and it has seasonal unit root if anyone of the

other 1'[; (i = 2,3, ... ,12) is zero. If all the 1'[; (i =1, ... ,12) are zero, then a
stationary model for the monthly seasonal differences of the series is
suitable.

Model Estimation
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The parameters of the selected SARIMA(p, d, q )(P, D, Q)s model can be estimated consistently
by least-squares or by maximum likelihood estimation methods. Both estimation procedures are
based on the computation of the innovations e

l
from the values of the stationary variable.

Model Diagnostic test
Once we have identified and estimated the SARIMA models, we assess the adequacy of the
selected models to the data. This model diagnostic checking step involves both parameter and
residual analysis by the use of ACF and PACF residuals plot, Ljung-Box Statistics and Normality
test.
If the univeriate modeling procedure is utilized for forecasting purposes then this step can also
form an important part of the diagnostic checking. This involves short forecast, middle forecast
and long forecast statistics of the fitted models.

3. Modeling and Forecasting Evaluations
The focus is to use the seasonal autoregressive integrated moving average (SARIMA) techniques

,
based on Box and Jenkins (1994) methodology to build models (Modelling) for the monthly

average temperature of Sokoto city using data set for the period January 1995 to December 2003.

The SARIMA model is then used to perform an out of sample forecast for January 2004 tc

December 2004. The data sets were obtained from the Metrological department, Sokoto State

International Air port.

3.1 Identification of the seasonal models.
Time plotFig 4.01 displays the time plot of the monthly average temperature series. A
noticeable feature is the persistent recurrence of the pattern variability in all the periods,
suggesting that the series has a pronounced seasonal pattern and hence is not stationary.
In this case a formal test has to be carried out to test the presence or absence of seasonal
unit root.
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Fig 4.0 I: Time plot of monthly average temperature(XJ
for Sokoto from 1995:1 to 2003:12.
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Fig 4.03: Range-Mean plot for Sokoto monthly average
temperature, 1995: I to 2003: 12

PACFrOl"soIctem

0.5

.•.- 1.96{T"<I.5 -

-0.5 I ' II
·1 '- __ ~ ~ __ ~ __ ~~ __ ~ __ --'

o 6010 20 lO
laG

30

"

50

Figure 4.02: ACF and PACF for the time series,
1995:1 t02003:12.
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Fig 4.04: Sample periodogram ofSokoto temperature,

1995:1 to 2003:12

ACFandPACF
ConsidertheACF plot of Fig 4.02 in which the highest spikes always occur at lags 12,24,
36, etc., this indicates that the series is seasonal with period 12. Also the series is highly
autocorrelated and the correlation is very persistent. Since the autocorrelation at seasonal
periods are positive we expected that the fitted model should have seasonal
autoregressive (SAR) component. On the other hand the PACF shows that the model is a
mixed model with bothARandMAcomponents.
Range-mean plot
We observe in the Fig 4.03 that the ranges are not increasing or do not tend to increase
with the means. This means that there is no strong positive relationship between the
sample mean and the sample variances for each period in the data. Finally, this indicates
that there is no need for a log transformation.
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Spectral analysis:
Spectral analysis is a useful frequency domain tool for detecting the existence of
periodicity in a time series (Hamilton, 1994). This can be achieved by plotting the
periodogram or spectral density of the series against either period or the frequency.

It can be seen in Fig 4.04 that there is a large-scale component at a frequency of nine
cycles, precisely. In this case, there were 108 samples (9 years of data). Therefore, a
frequency of nine is nine cycles every 108 months, or one cycles every 12 months
(108/9). There is also another spike at a frequency of 18, which corresponds to a period of
6 months (108/18). The frequency spectrum clearly shows that there are both seasonal
(12 month) and monthly (6 months) cycles in the sokoto temperature data .the height of
the spikes tell you how much each spectral component contribute to the original data.

Unit root test
We use two methods to determine the order of non-seasonal integration ofthe series: ADF
(Augmented Dickey-Fuller) and KPSS tests. TheADF test checks the null hypothesis of
unit root against the alternative of stationarity for the data generating process. The KPSS
test checks the null hypothesis of stationarity against the alternative of a unit root for the
data generating process. The results for the ADF and KPSS tests are in Table 4.01. At the
5% significant level, the ADF test rejects the null hypothesis of unit root and KPSS test
does not rejects the null hypothesis of stationarity. Therefore conclusively the time series
does not required non-seasonal differencing.

HYGYTest
The HYGY statistic tests the null hypothesis there is no seasonal unit root against the
alternative seasonal unit root. The p-value in table 4.01 is 0.006. Hence the null
hypothesis of no seasonal is rejected at 5% significance level, confirming our
expectation that the time series is seasonally integrated.

Table 3.01: Summary results for different tests

TEST t-statisties p-valiuis
ADF
KPSS
HYGY for levels
HYGY test for seasonal difference

-4.6388
0.0189
0.5567
0.0756

0.00011
0.146
0.006
0.405

Penalty function criteria
To specified the range of values of the SARIMA parameters. The values of three of the
parameters are known now: =12, = 0, and = 1; we have shown that the order of
nonseasonal integration is zero; the order of seasonal integration is 1 and the periods of
seasonality 12.
For the parameter space = 0,1,2, ... ,5; = 0,1,2, ... ,4; = 0,1,2, ... ,6; =0,1,2, ... ,4, the most
parsimonious models given by the two information criteria AIC and BIC using ASTSA
are:
1. SARIMA(l, 0, 0)(0,1,1) 12
2. SARIMA(2, 0,1)(2,1,0) 12
3. SARIMA(2,0,2)(3,1,2) 12
4. SARIMA(3, 0,1)(4,1,0) 12
5. SARIMA(4, 0, 2)(5,1,1) 12
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An extension ofthe search to any wilder parameter space produced the same results. This
confirms the optimality ofthe five models above.

Estimation of Models

The parameter estimation results show that all the models parameters are significant by
using their standard error with their P values. The Table below represents the estimates:

Diagnostic checking
We test whether or not the residuals are generated by a white noise process by using (i) the
ACF and PACF plots using the Ljung- Box test to check whether or not the residuals are
uncorrelated, (ii) normal probability plots and the Anderson-Darling test to test the
normality ofthe residuals.

Table 4.03 shows the results for Ljung-Box test, .The tests reveals that only the residuals
for the models SARIMA(2,0,1)(2,1,0)12 and SARIMA (2,0,2)(3,1,2)12 are not
uncorrelated, using the 5% significance level; these two cases are identified by the
symbol *.
Table 4.02: Models Estimations

Model Predictor Coefficient Std. Error T- ratio P- value
SARIMA AR(I) 0.24 0.096 2.53 0.13
(I ,0,0)(0, I, I) SMA(I) 0.78 0.073 10.72 0.000
Model Predictor Coefficient Std. Error T- ratio P- value
SARIMA AR(I) 0.95 0.0017 546.9 0.000
(4,0,2)(5,1,1) AR(2) -0.38 0.0015 -248.6 0.000

AR(3) 0.34 0.0017 198.3 0.000
AR(4) -0.22 0.0015 -148.6 0.000
MA(I) -0.36 0.0017 -208.8 0.000
MA(2) 1.33 0.0017 774.3 0.000
SAR(I) -0.06 0.0017 -38.1 0.000
SAR(2) -0.52 0.0015 -350.7 0.000
SAR(3) -0.52 0.0016 -324.3 0.000
SAR(4) -0.28 0.0017 -162.9 0.000
SAR(5) -0.17 0.0017 -98.3 0.000
SMA(I) 0.96 0.0017 551.9 0.000

Model Predictor Coefficient Std. Error T- ratio P- value
SARIMA AR(I) 0.03 0.0068 3.9 0.000
(3,0, 1)(4,I ,0) AR(2) -0.28 0.0097 -29.3 0.000

AR(3) 0.04 0.0093 4.3 0.000
MA(I) -1.18 0.0097 -122.5 0.000
SAR(I) -0.38 0.0082 -46.7 0.000
SAR(2) -0.65 0.0089 -73.0 0.000
SAR(3) -0.61 0.0095 -64.7 0.000
SAR(4) -0.31 0.0095 -32.3 0.000
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TABLE 4.03: Ljung-Box statistics (to test the residual autocorrelation as a set rather than

iiidividuals

Seasonal ARIMA Models Lung-Box test
X(l-a;k-p)

P value

SARIMA (1,0,0)(0,1,1) QLB(30)=22.4286 41.3 0.0404

SARIMA(2,0,0)(2,1,0) QLB(30)=27.3162 18.9 0.8406*

SARIMA(2,0,2)(3, 1,2) QLB(15)=14.6718 12.6 0.0498*

SARIMA(3,0,1)(4,1,0) QLB(l5)=9.4458 14.1 0.0424

SARIMA(4,0,2)(5,1,1) ~B(15)= 11.7841 12.6 0.006

The results for the normality test are in Table 4.04.The residuals of the entire five models pass the
normality test.

Table 4.04: Results for the normal probability plot and the Anderson-Darling test

Models Normal plot value p- Value (base on Anderson-Darling)
(1,0,0)(0,1,1)
(2,0,0)(2,1,0)
(2,0,2)(3,1,2)
(3,0,1)(4,1,0)
(4,0,2)(5,1,1)

0.98800
0.99171
0.99602
0.98416
0.99170

0.057
0.196
0.865
0.344
0.870

On the basis of the results of the diagnostic checking the following three models were selected:

1. SARIMA (1,0,0)(0,1,1)12

1. SARIMA (3,0,1)(4,1,0)12
2. SARIMA (4,0,2)(5,1,1)12

Forecast evaluation

The Table below represents the lower, middle and long forecast statistics for the sokoto
temperature series.
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Table 4.05: Short, Middle and Long Forecast statistics for the three fitted SARIMA models

Short forecast statistics Middle forecast statistics Long forecast
statistics

SARIMA Mean Mean Mean Mean Mean Mean Mean Mean Mean
Models Error Abs. Sq. Error Abs. Sq. Error Abs. Sq.

Error Error Error Error Error Error
SARIMA 0.175 0.925 1.253 -0.75 0.9 1.125 0.95 0.95 1.01
(1,0,0)(0,1,1)
SARIMA -0.2 0.9 1.03 -0.3 0.45 0.505 0.225 0.625 0.478
(4,0,2)(5,1,1)
SARIMA -0.2 0.85 0.885 -0.35 0.75 0.8l3 0.825 0.825 0.986
(3,0,1 )(4,1,0)

The short forecast statistics (from 2004:01 to 2004:04) in table 4.05 show that the mean
errors of the models are significantly smaller than their mean absolute errors. This
implies that the forecast are neither systematically over forecasting nor under forecasting
the temperature. SARIMA (3,0,1)(4,r,0)12 model is optimal forecast, since it has the
lower mean square error of short forecast statistics. Also the Middle forecast statistics
(from 2004:05 to 2004:08) explained that the mean errors ofthe models are significantly
smaller than their mean absolute errors. This implies that the forecast are neither
systematically over forecasting nor under forecasting the temperature. The middle
forecast ofSARIMA (4,0,2)(5,1,1) 12 model is significantly more appropriate to forecast
temperature, since it provides optimal forecast statistics by having minimum mean error
and mean absolute error. Similarly for the Long forecast statistics (from 2004:09 to
2004: 12) the models forecast are neither systematically over forecasting nor under
forecasting the temperature, since the mean error of the models are significantly lower
than their mean absolute error and mean square error. SARIMA(4, 0, 2)(5, 1,1)12 model
has optimal long forecast statistics, since it mean error, mean absolute error and mean
square error are less than that ofthe rest ofthe models.

CONCLUSION
This paper has considered the seasonal autoregressive integrated moving average
(SARIMA) modeling and forecasting of sokoto monthly average temperature. Five
seasonal models were chosen, by using model selection criteria. Only three models have
passed the diagnostic test while the rest failed one or more of the tests.
From the out-of-sample forecast statistics analysis, we conclude that the short forecast
statistics (2004: 1 to 2004:4) of the three fitted models have shown that SARIMA
(3,0,1)(4,1,0) 12 model minimizes the mean square error statistics of the forecasted
models. This model was then found to be adequate and significantly better than the rest of
the fitted models, and is adequate for a good description and forecasting of temperature
pattern of the city. The middle forecast statistics (2004:5 to 2004:8) and long forecast
statistics (2004:9 to 2004:12) have both shown that, SARIMA (4,0,2)(5,1,1)12 model
has optimal forecast to the temperature by minimizing the mean squared errors of
forecasts than the rest ofthe models.
Therefore, conclusively the best seasonal model among the forecasted models that is
adequate to describe and forecast the seasonal dynamics for Sokoto city temperature is
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SARIMA (3,0,1)(4,1,0) 12 for the first quarter and first month in the second quarter of
year and SARIMA(4,0,2)(5,1,1) 12 for the rest oftheyear.
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