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Greatest Danfodites

Members of my family

Invited guests

Gentlemen of the press
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Preamble

Inaugural lecture is an essential vehicle that provides opportunity for academics to advertise and
share their gradual achievements in research, innovation, engagement and teaching activities
before members of the University community and the general public. The new professor seizes the
opportunity of celebrating an important milestone with his/her family, friends, colleagues and
general public. It is also an avenue for the University to recognise and showcase the academic
achievements of its staff. Most importantly colleagues can hear about researches that are going

around the University.

Despite widely documented toxicity of Aluminium, its usage is becoming unavoidably in present
day life. Researchers and general population tend to ignored its devastating effects probably due
to difficulty in its determination. Hence, virtually aluminium is present in every shiny indoors and
outdoors materials, food, drugs, cosmetics and pharmaceutical preparations. These among other
things prompted me to choose this particular topic to showcase the dangerous interaction between

aluminium and humanity.
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APPENDIX I11: ABBREVIATIONS

AD Alzheimer’s disease

ADI Adult Dietary Intake

Al Aluminium

ALS Amyotrophic Lateral Sclerosis

APP Amyloid Precursor Protein

ATP Adenine-triphosphate

ATSDR Agency for Toxic Substances and Disease Registry
CDCP Centre for Disease Control and Prevention
COoT Committee on Chemicals Toxicity

DE Dialysis Encephalopathy

EFSA European Food Safety Authority

ETC Electron Transport Chain

FAO Food and Agricultural Organisation

FEHD Food and Environmental Hygiene Department
FIRA Federal Institute for Risk Assessment

FSA Food Standard Agency

GIT Gastrointestinal Tract
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GPx Glutathione peroxidise

GST Glutathione S-transferase

GSTM Glutathione S-transferase mu

GSTP Glutathione S-transferase pi

HIF-1a Hypoxia Inducible Factor-1la

IPAI International Primary Aluminium Institute
JECFA Joint Expert Committee on Food Additives
LMW Low Molecular Weight

MS Multiple Sclerosis

PD Parkinson’s disease

PHD Prolyl Hydroxylase

ROS Reactive Oxygen Species

SOD Superoxidase Dismutase

TBARS Thiobarbituric Acid Reactive Substances
TWI Tolerable Weekly Intakes

us United State

VLDL Very Low-Density Lipoprotein

WHO World Health Organisation
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INTRODUCTION

Aluminium is the most abundant metallic element, and the third most abundant chemical element
in the earth’s crust (Exley, 2003; Krewski et al., 2007; ATSDR, 2008; Gupta et al., 2013). About
8.8% (88 g/kg) of its weight (Frederick and Edward, 2000) is found in the environment as silicates,
oxides and hydroxides and as complexes with organic matter (Nayak, 2002). It exists as
aluminosilicate composed of aluminium, silicon, oxygen, and in combination with other elements
such as sodium and fluorine in rocks (particularly igneous rocks), soil, clays, and gems (Whitney,
2002; Lide, 2005). Aluminium was first produced commercially by Sainte-Claire Deville (1856).
The aluminium production process is much more complex and required huge amounts of
electricity. The bauxites that contain aluminium are extracted from the ground and processed into
alumina or aluminium oxide. Pure aluminium is produced using electrolytic reduction. This
electrolytic process was patented by Heroult and Hall (1886). The global production of aluminium
has been increased from 8,000 tons in 1900 to about 50 million tons in 2006 (Exley, 2009). The
production began to shift from developed to the developing nations and the World production had

increased up to 58,500, 000 metric tons in 2015.

Plants, animals and humans are experiencing increased exposure to biologically reactive
aluminium and is strongly influenced by atmospheric acidification, especially acid rains which
have an adverse effect on the environment (plants, animals, and humans) (Kopacek et al., 2009).
Aluminium commodities permeated all human activities until the second half of the twentieth
century, when the aluminium was recognized as the main cause of serious diseases, like dialysis,
osteodystrophy and dementia (Berthon, 2002; Bodor et al., 2002; Yokel, 2002; Crisponi et al.,

2012). Consequently, the chemical and biomedical research on aluminium dramatically increased,
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and many research articles, reviews and books are now available in the literature on its biological

role, speciation and toxicokinetics.

ALUMINIUM IDENTITY

The existence of aluminium was ascertained and named after alumina (aluminium oxide) by
Humphry Davy (1808). The name, aluminium is derived from the Latin name for alum, ‘alumen’
meaning bitter salt. Aluminium was discovered in 1825 by the Danish chemist and Hans Christian
Oersted, who successfully separated some impure metallic aluminium by reacting its chloride salt
with potassium amalgam and then distilling the mercury off. Pure aluminium is characterized by

some distinctive chemical identities, as shown in Table 1 below.

Table 1: Chemical Identity of Aluminium
CHARACTERISTICS

CHARACTERISTIC INFORMATION
Chemical name Aluminium (U.S., Canada)
Synonym(s) Aluminium; alumina fibre; metana; aluminium bronze;

aluminium dehydrated; aluminium flake; aluminium powder;
aluminium-27; Noral aluminium; PAP-1

Chemical formula Al

IDENTIFICATION NUMBERS

CAS Number 7429-90-5
EINECS 231-072-3
NIOSH RTECS BD330000
EPA Pesticide 000111

CHEMICAL CODE
DOT/UN/NA/IMCO UN 1309; UN 1396; IMO
Shipping 4.1; IMO 4.3; NA 9260
HSDB 507

(Soni et al., 2001; Meija et al., 2016)
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CHEMISTRY OF ALUMINIUM

Aluminium is a soft, silvery-white, ductile, and malleable metal with atomic number and atomic
mass 13 and 26.9815, respectively (Table 2). Aluminium has one stable isotope 2’Al, and one long-
lived radioactive isotope 2°Al, a beta and gamma emitter with a half-life of 7.2 x 10° years. The
electronic configuration of aluminium is 1s2, 2s?, 2p®, 3s? 3p?, and it belongs to Group 13 (111A),
Boron family and found in period 3 of the periodic table (O’Neil et al., 2001). Aluminium has a
melting point of 933.47 K (9660.32 °C, 1220.58 °F), and boiling point 2743 K (2470°C, 4478°F).
The density of aluminium is approximately 2.7 g/cm® and soluble at pH 6.2 (Table 3). The
solubility increases with acidic or alkaline solutions and some ligand complexes (Soni et al., 2001).
In compounds, aluminium typically occurs in its +3 oxidation state (O’Neil et al., 2001; Lide
2005). Aluminium is an amphoteric oxide with different ionization energies, and its atomic

properties are presented in Table 4.

Aluminium reacts with water to produce hydrogen gas and aluminium hydroxide bayerite
(Al(OH)3), aluminium hydroxide boehmite (AIO(OH)), and aluminium oxide (Al203) in the

following reactions, respectively.

2Al + 6H20 » 2AI(OH)s3 + 3H: 1)
2Al + 4H20 » 2AIO0(OH) + 3H> 2
2Al + 3H20 > AlO3z + 3H> 3)

All the reactions are thermodynamically favourable at room temperature and highly exothermic
(Digne et al., 2002; Andersen et al., 2004). From room temperature to 280 °C, Al(OH)s is the most
stable product, while from 280-480 °C, AIO(OH) is most stable. Above 480 °C, Al,QOs is the most

stable product (Digne et al., 2002; Andersen et al., 2004). However, aluminium hydroxide bayerite
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(Al (OH)s) in solid state reacts with water to produce hydroxide (OH") and hydroxonium (HsO")

ions.
Al(OH)s + 6H20 » [Al(H20)6]*" + 30H"
Al(OH)s + 4H,0 > [Al(H20)2(0OH)4] + H30*

Table 2: Periodic Properties of Aluminium

PROPERTY INFORMATION

Atomic number 13

Atomic mass 26.9815

Group 3

Period 3

Block p-block

Element category Post-transition metal (Metalloid)
E.C. [Ne] 3s? 3p?

Electrons per shell 2,8,3

(Whitten et al., 2014)

Table 3: Physical Properties of Aluminium

PROPERTY INFORMATION

Appearance silvery grey metallic

Phase at STP Solid

Melting point 933.47 K (9660.32 °C, 1220.58 °F)
Boiling point 2743 K (2470 °C, 4478 °F)
Density ~ 2.7 glcm?®

Heat of fusion 10.71 kdmol?

Heat of vaporization 284 kJmol-1

Molar heat of capacity 24.20 Jmol iK1

(O’Neil et al., 2001; Cox, 2004; Lide, 2005)
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Table 4: Atomic Properties of Aluminium

PROPERTY INFORMATION

Oxidation states -2,-1,+1, +2, +3 (an amphoteric oxide)
Electronegativity Pauling scale: 1.61

lonization energies 1% 577.5 kJmol*

2nd: 1816.7 kdmol™®
3'd: 2744.8 kJmol?

Atomic radius empirical: 143 pm
Covalent radius 121+4 pm
Van der Waals radius 184 pm

(O’Neil et al., 2001; Cox, 2004, Lide, 2005)

SOURCES OF ALUMINIUM

Aluminium is naturally found in air, water and soil (ATSDR, 2010). Surprisingly, some reasonable
amounts of aluminium are found in different antiperspirants, vaccines, antacids and cosmetics
(Table 5). Some foodstuffs are also considered as important sources of aluminium (Yokel and
McNamara, 2001), these include; potatoes, spinach, tea, coffee, beans, marjoram and thyme (Malik
etal., 2008; Giddings et al., 2010), very low aluminium levels were reported in tomatoes (Giddings
et al., 2010). Crayfish have been shown to accumulate aluminium from contaminated water,
mostly found in their hepatopancreas (Woodburn et al., 2011). Products containing aluminium as
food additives include; processed cheese, baked goods, jellyfish, fried twisted cruller, or

microalgal supplements (Rzymski et al., 2015; Zhang et al., 2016; Rzymsk et al., 2018).

Aluminium was also found in some consumer products such as antacids (aluminium hydroxide),
astringents, food additives (aluminium oxides), antiperspirants, fuel additives, explosives,

propellants and cosmetics (Krewski et al., 2007; ATSDR, 2008). Aluminium is used in the process
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of making cooking pots, pans, utensils and foil, most baking powders, toothpaste, dental amalgam,

bleached flour, grated cheese, table salt, and chokes and beers (especially when they are in

aluminium cans) (Rzymski et al., 2015; Zhang et al., 2016; Rzymsk et al., 2018)

Table 5: Sources of Aluminium

SOURCE AMOUNT REFERENCE

Natural sources (Rivers, Seaetc.) 2-5 mg/day Jorhem and Haegglund (1992);
Woodburn et al. (2011);

Tea leaves 0.1%-1% Koch et al. (1988); Matsumoto et al.

Coffee from aluminium moka
Drinking water

Beverages in aluminium cans

Cooked spinach

Unprocessed food

Food additives

Food cooked in aluminium pots
Soy-based infant milk formulas
Antacids

Buffered aspirin
Anti-diarrhoeal drugs
Antiperspirants

Vaccines

Marjoram and thyme

Tomatoes

0.8-1.2 mg/cup
0.07 mg/I
0.04-1.0 mg/I

25 mg/kg

0.1-7 mg/kg
10-20 mg/day
0.2-125 mg/kg
6-11 mg/kg
35-200 mg/dose
9-50 mg/dose
36-1450 mg/dose
50-75mg
0.15-0.85 mg/dose
500 - 1000 pg/g
0.2-1.1pg/g

(1978)
Malik et al. (2008)
Crisponi et al. (2011)

Duggan et al. (1992); Liukkonen
and Piepponen (1992)

Liukkonen and Piepponen (1992)
Malik et al. (2008)

Jorhem and Haegglund (1992)
Liukkonen and Piepponen (1992)
Burrell and Exley (2010)

Simon et al. (1990)

Simon et al. (1990)

Simon et al. (1990)

Burrell and Exley (2010)

Malik et al. (2008)

Burrell and Exley (2010)

Burrell and Exley (2010)
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ALUMINIUM CYCLE

Aluminium has an important biogeochemical cycle, at high concentrations can have widespread
environmental effects and cause toxicity in a variety of living organisms; including microbes,
plants, fishes, and mammals (Bruins et al., 2000; Exley, 2003; Lemire et al., 2010; Delhaize et
al., 2012). Aluminium from industrial and mining processes, food packaging, and cooking utensils
is released into the environment; mainly into the atmosphere (Soni et al., 2002). Acid rain causes
changes in the pH of the soil and water, resulting in mobilization of toxic aluminium ions leading
to increase in atmospheric acidification (Exley, 2003; Kopacek et al., 2009). This causes the
release of aluminium into the soil solution, underground and surface waters where absorbable
cationic aluminium species come in contact with plants, animals and humans causing many
adverse effects (Kopacek et al., 2009). All these phenomena are conceptualized in the form of a

cycle, as presented in Figure 1 below.
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Aluminum Cycle
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Figure 1: Aluminium Cycle (Source: Bradford, 2000)

The adverse effects of aluminium in the environment include drying of forests, plant poisoning,

crop decline or failure, death of aquatic animals, and the various imbalances in the function of

human and animal systems (Barabasz et al., 2002). The common manifestations in plants are root

growth inhibition, cellular modification in leaves, small and dark green leaves, yellowing and

death of leaves, chlorosis, purpling and foliar necrosis (Gupta et al., 2013). Aluminium in high

concentrations is very toxic for aquatic animals, especially for gill breathing organisms such as

fish, causing osmoregulatory failure by destructing the plasma and hemolymph ions.
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USES OF ALUMINIUM

Aluminium is widely used in the fields of medicine, pharmacy, food technology, and cosmetics

(Aronson, 2006). Aluminium is used for various purposes in the following industries:

Pharmaceutical industries (Reinke et al., 2003)

antacids

phosphate binders

buffered aspirins

adjuvant

e vaccines or antiperspirants

Cosmetics industries (Aronson, 2006)

e antiperspirants

Food industries (Yokel et al., 2008)

e food packaging
o food additive
e emulsifying cheeses

e Dbinding meats

Aluminium is also used in automotive aircraft and industries, construction and spatial industries,
cooking utensils, and water treatment (Exley, 2003; WHO, 2003). Aluminium compounds are
widely used in paper and dye production; in the textile industry; as a catalyst in oil refining; in the
glass industry; in paints and pigments industry; as anti-caking agents; for leaving baked goods;

thickening prepared sauces; colouring agents; and for buffering, stabilizing, curing and texturing
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foods (IPAI, 2000; Soni et al., 2001; Hem, 2002; Yokel et al., 2008). Moreover, some aluminium

salts are used in water purification, as well as in brewing and sugar refining (WHO, 2003).

ORGANOLEPTIC PROPERTIES OF ALUMINIUM

Aluminium flexible packaging is used to keep the organoleptic properties of food and to isolate
the product from oxygen and other environmental phenomena which may alter its physicochemical
properties (Nayak, 2002). The use of aluminium-containing additives in processing certain types
of food such as grain-based products and processed cheese may change the colour, taste or odour

of the processed food products (Nayak, 2002).

The use of aluminium salts as a coagulating agent (promoting particle collision by neutralizing
charge) in the purification of drinking water and wastewater treatment plants may lead to increased
concentration of aluminium in finished water resulting in undesirable colour and turbidity (Kvech

and Edwards, 2002; GHEF, 2007).

Aluminium sulphate is used as a mordant in dyeing and printing textiles. Aluminium sulphate
when dissolved in a large amount of neutral or slightly alkaline water, produces a gelatinous
precipitate of aluminium hydroxide, Al(OH)s which is used in dyeing and printing cloth, helps the
dye adhere to the clothing fibres by rendering the pigment insoluble. The use of aluminium
sulphate to reduce the pH of garden soil results in a change in the colour of flowers (Hydrangea)

to blue (Kari, 2013).

DIETARY INTAKE OF ALUMINIUM

The total aluminium content of foods comprises naturally present aluminium, aluminium from
food additives and aluminium leaching into foods from food contact materials like aluminium foil,
trays, cans, cookware, utensils and food packaging (Zhou and Yokel, 2005). Dietary intake of
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aluminium considerably varies; it depends on the country, place of residence, and diet composition
(\Vargel, 2004). Humans consume about 10 mg of aluminium on a daily basis of which 9.6 mg is
taken from foods, 0.1-0.4 mgq is taken from kitchen utensils and packaging, and 5 pg is taken from
the air (Vargel, 2004). However, dietary intake of aluminium from foods and drinking water is low
compared with that consumed by people taking aluminium-containing medicinal preparations

(Zhou and Yokel, 2005).

In order to address the safe limits for aluminium in the human diet, tolerable weekly intakes (TW1)
of aluminium were established by some regulatory authorities. In 2008, the European Food Safety
Authority (EFSA) issued an opinion on the safety of aluminium from dietary intake in which the
typical aluminium content of unprocessed foodstuffs was less than 5 mg per kg food (EFSA, 2008).
According to the EFSA assessment, the dietary intake of aluminium in the general population is
between 0.2 to 1.5 mg per kilogram of body weight per week, equivalent to a daily intake of 1.7
to 13 mg of aluminium for a 60 kg adult (EFSA, 2008). Based on animal studies, EFSA has
established a Tolerable Weekly Intake (TWI) of 1 mg aluminium per kg of body weight (EFSA,

2011).

The Joint FAO/WHO Expert Committee on Food Additives (JECFA) has recently given a
scientific opinion on the safety of aluminium from dietary intake (JECFA 74" Meeting, Rome
June 14— 2 3, 2011). In the JECFA report, the TWI for aluminium was determined and
corresponded to 2 mg aluminium per kg of body weight per week (FAO/WHO, 2011). This value
is twice that established by EFSA. The JECFA affirms in their report that ‘The Committee noted
that estimates of the contribution to overall mean dietary exposure from all sources (including
natural sources, water consumption, food contact materials and food additives) were in the range

of 10 — 140 mg/week in adult populations (0.2 — 2.3 mg/kg bw per week as aluminium, assuming
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a bodyweight of 60 kg). The estimated dietary exposures are related to average adult populations,

and high dietary exposures are generally assumed to be 2 times higher than the reported average.

It also noted that children generally have higher food intake than adults when expressed on a body
weight basis and therefore represent the highest potential exposure to aluminium per kilogram of
body weight (Joint FAO/WHO, 2006). These demonstrated that in many countries, a considerable
number of people, especially children, are under high aluminium exposure and are at risk of

aluminium intoxication (Krewski et al., 2007).

The dietary intakes of aluminium of the adult population from the overall diet including additives,
varied among different countries; this ranged from 1.6 mg/day in most French studies (Leblanc et
al., 2004) to more than 34 mg/day in Mainland China (Zhang and Gao, 2003) (which contributed
to about 20 — 400% of PTWI, assuming a bodyweight of 60 kg). In fact, the dietary intakes of
aluminium of some population groups were found to exceed the Population tolerable weekly intake
(PTWI) in some countries such as the UK (1.3 mg/kg bw/week for toddlers (1.5 — 4.5 years) (FSA,
2009), Sweden (1.5 mg/kg bw/week for 60-kg females) (WHO, 1997), and Mainland China (4.0
mg/kg bw/week for 60-kg adults) (Zhang and Gao, 2003). Adult dietary intakes of aluminium have

been reported in several countries, including Nigeria (Table 6).
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Table 6: Adult Dietary Intakes of Aluminium

COUNTRY ADULT DIETARY INTAKE (mg/day) @ REFERENCE
France 1.6 Leblanc et al. (2004)
Australia 19-24 WHO (1997)
Netherlands 3.1 WHO (1997)
Switzerland 4.4 WHO (1997)

Japan 4.5 WHO (1997)

Hong Kong 5.1 FEHD (2009)

UK 5.4 FSA (2009)

Finland 6.7 WHO (1997)

USA 7.1-8.2 WHO (1997)
Germany 8-11 WHO (1997)
Sweden 13 WHO (1997)
Mainland China 34 Zhang and Gao (2003)
Nigeria 99-144 Ekanem et al. (2009)

Dietary intake studies in Mainland China and UK showed that cereals and cereal products were
the main dietary sources of aluminium, contributed 79.5% and 49% of total dietary intakes,
respectively. The relatively high aluminium intake from the cereal products might be attributed to

the use of aluminium-containing food additives (Zhang and Gao, 2003; FSA, 2009).

ALUMINIUM SPECIATION

Aluminium can be found in water, based on aquated positive ions or hydroxylated aluminates in
different forms including monomeric and polymeric hydroxy species, colloidal polymeric
solutions and gels, and precipitates. Aluminium speciation is a complex problem in the biological
system, due to the wide variety and complexity of aluminium hydrolytic species, their low

solubility and their spectroscopic silence (Sarpola, 2007). Aluminium speciation in biological
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systems exist in various aluminium hydrolytic species that could be formed in agueous solution as
a function of pH which implies the study of different protonation states, tautomers and oligomers
that aluminium can form in solution (Bogatko et al., 2010). It also includes the interaction of
aluminium with biomolecular building blocks, low molecular weight (LMW) species, or high

molecular weight (HMW) ligands such as proteins (Bogatko et al., 2013).
ENVIRONMENTAL LEVELS AND HUMAN EXPOSURE

Aluminium is found in the environment; mainly released by natural and anthropogenic processes.
It is released into the environment by natural processes through the weathering of rocks and
minerals (Soni et al., 2002). Acidification of the environment caused by acid mine drainage or acid
rain can cause an increase in the dissolved aluminium (AI**) content of the aquatic systems (WHO,
1997; Soni et al., 2002; ATSDR, 2008). Aluminium is also released into the environment in the
form of air emissions, wastewater effluents, and solid waste primarily associated with industrial

and mining processes as captured by Likens (2001) in Figure 2.

However, aluminium content in food packaging and cooking utensils is an important route of
aluminium release into the environment (Soni et al., 2002). Residues of aluminium-containing
drugs, cosmetics and food additives can also release aluminium into the environment. Several
factors influence aluminium mobility and subsequent transport within the environment. These
include chemical speciation, hydrological flow paths, soil-water interactions and the composition

of the underlying geological materials (WHO, 1997; ATSDR, 2008).

It is abundant in the biosphere and widespread in the air (150 mg/m?®), water (0.8 mg/I), and plants

(up to 200 mg/kg) (Kabata, 2011). The routes of human exposure to aluminium include the
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digestive tract, skin, and occupational inhalation (Krewski et al., 2007; ATSDR, 2008; Shaw et

al., 2014).

Air

In 2005, 586 metric tons of aluminium was released (fume or dust) to the atmosphere from 329
domestic manufacturing and processing facilities. This accounted for about 2.8% of the estimated
total aluminium released into the environment (EFSA, 2008). Air concentrations vary between

rural and urban settings, with higher levels in industrial areas. Exposure from this source could

contribute up to 0.04 mg/day (EFSA, 2008).

The air we breathe is an important contributor to the body burden of aluminium. In a clean
environment (air) of 100 ng/m3 aluminium content, human exposure to aluminium through normal
breathing is approximately 1.4mg per day (Goncharuk et al., 2012). This is essentially the lowest
possible exposure to aluminium from breathing, and the majority of this aluminium is retained in
the lungs and olfactory epithelia (Goncharuk et al., 2012). This value could easily be increased

one thousandfold to 1.4 mg per day in many industrialised regions (Polizzi et al., 2007).

Exposure to aluminium through breathing can be significantly influenced by natural soil erosion,
volcanic eruptions, coal combustion or specific activities including agricultural activities,
industrial and mining activities or workplace exposure (Polizzi et al., 2002) and habitual exposure
such as smoking of cigarettes and cannabis (Exley, 2006) and use of cocaine (Pechansky et al.,
2007) and heroin (Exley, 2007). Aluminium is an essential component of many aerosol
formulations of cosmetics, and particularly antiperspirants, and these, especially through regular

use, will contribute significantly to exposure to aluminium through breathing (Exley, 2007).
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Diets

Measurements of the intake of aluminium in whole diets have varied from about 1 to more than
20 mg per day (Bratakos et al., 2012). These are conservative estimates of mean daily intake and
do not account for compounding factors such as contamination from cooking and cooking wares
(Bassioni and Mohammed, 2012), specific products with unusually high burdens of aluminium
(Stahl et al., 2011), or individual eating patterns (Lopez et al., 2002). Dietary supplements, such
as vitamins, whether ‘natural’ products or otherwise are never included in these estimates of
aluminium intake despite being regular components of many people's diets and despite being
widely contaminated with aluminium (Shafer and Seifert, 2006). Dietary exposure of humans to
aluminium can be through water (FIRA, 2008), foods (Saiyed and Yoke, 2005), food additives

(Krewski et al., 2007), and aluminium contaminated equipment/utensils (Domingo, 2003).

Water

Drinking water is one of the common forms of human exposure to aluminium. The aluminium
concentration in natural waters varies according to numerous physicochemical, mineralogical and
geochemical factors (EFSA, 2008). Aluminium based coagulants, such as aluminium sulfate (Al-
sulf) and polyaluminium chloride (PACI), are widely used in water treatment plants to remove
particulate, colloidal, and dissolved substances via coagulation process (Kvech and Edwards,
2002; GHEF, 2007). A residual quantity of this aluminium is then present in the drinking water.
The concentration of aluminium in natural waters (e.g., ponds, lakes, streams) is generally below
0.1 milligrams per litre (mg/L). Several cities have reported concentrations as high as 0.4— 1 mg/L

of aluminium in their drinking water (EFSA, 2008).
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Figure 2: Atmospheric and Soil Acidification (a). The “simple” view of the early 1960s to early 1970s. (b).The
increasingly complex view currently (Likens, 2001).

Foods and Food Products

Foods or food products are the primary sources of dietary aluminium exposure to humans with
estimated daily exposure between 3 and 10 mg (Yokel and Florence, 2008). Tea and coffee
infusions are recognized as a significant source of dietary aluminium exposure to humans (Milacic,
2005; Malik et al., 2008). Some studies suggest that aluminium exposure in humans is associated
with utilization of cookware and food packaging materials made from aluminium (Ai-Ashmawy,

2011; Weidenhamer et al., 2014).
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Aluminium is used as a food packaging material because it is lightweight and highly resistant to
most forms of corrosion (Marsh and Bugusu, 2007). Migration of aluminium from foil into food
depends on several factors, including the composition of the raw food, the duration and
temperature of heating, the pH of the food, and the presence of other substances (e.g. organic acids,
salt, sugar and other ions) (Ranau et al., 2001; Turhan, 2006). Cooking of acidic foods in

aluminium saucepans or foil can result in leaching of the metal (Ranau et al., 2001).

Antiperspirants containing aluminium chlorohydrate are another source of exposure. Vaccines,
antacids, phosphate binders, dialysis, and total parenteral nutrition solutions are common and can

result in a significant increase in aluminium exposure (Yokel and McNamara, 2001).

ACUTE EXPOSURE

Acute exposures to aluminium cause adverse effect in human bones (Hongve et al., 1996; Ziota et
al., 2015), brain (Abubakar et al., 2008; Mold et al., 2018) and uterus (Rzymski et al., 2016;
Rzymski et al., 2018), as well as in fluids including urine (Ogawa and Kayama, 2015), serum
(Rollin et al., 2018), breast milk (Poniedziatek et al., 2018), and semen (Klein et al., 2016). Studies
showed an association between acute human exposures to aluminium and cognitive impairment,
such as agitation, confusion, or myoclonic jerk (Bakir et al., 2002, Nayak, 2002), while
occupationally exposed subjects revealed disruption in memory and concentration (Riihimaki et

al., 2000; Giorgianni et al., 2003).

Acute exposure to aluminium in humans is significantly increased by various activities which
include specific industrial and agriculture occupations, first-hand and second-hand smoking, and
the use of recreational drugs; such as heroin or cocaine (Rzymski et al., 2015; Zhang et al., 2016;

Rzymski et al., 2018). Aluminium phosphide, a potent pesticide utilised for the protection of stored
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products and crops has been shown to be severely toxic to humans (Bogle et al., 2016). Individuals
that underwent acute exposure to aluminium phosphide have been presented with nausea,
vomiting, acute respiratory distress syndrome and altered sensorium (Sudakin, 2005). The oral
median lethal dose (LDso) of the aluminium compounds (bromide, nitrate, chloride and sulphate)

is moderate to low (1000 — 200 mg/kg b.wt) (FAO/WHO, 2007; EFSA, 2008; and 2012).

CHRONIC EXPOSURE

Prolong aluminium exposure induces oxidative stress and pathological alterations in diverse areas
of the brain of neonatal rats (Yuan et al., 2012). It has been demonstrated that chronic exposure to
aluminium not only causes neurologic signs, which mimic progressive neurodegeneration but also
results in neurofilamentous changes in the hippocampus, cerebral cortex and biochemical changes
(Savor et al., 2006). It has been reported that prolong administration of aluminium compounds
(including aluminium nitrate, aluminium sulphate and potassium aluminium sulphate) in rats
produced various effects, including the decreased gain in body weight, and mild histopathological
changes in the spleen, kidney, liver and primary cortical astrocyte of the rat's brain(FAO/WHO,

2007; Abubakar et al., 2008).

Chronic aluminium exposure disrupts normal development in baby rats (Nehru and Anand, 2003).
It was also reported that chronic aluminium exposure increased the weights of the maternal spleen
and liver, and decreased foetal top-to- heel lengths in pregnant mice (Golub et al., 1987). However,
it has been shown that chronic aluminium exposure causes significant morphologic and

ultrastructural damage to the rat kidney, liver and testis (Kutlubay and Oguz, 2007).
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ABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION
Absorption

The absorption of dietary aluminium, distribution, metabolism and excretion are presented in
Figure 3 and 5. Gastrointestinal tract (GIT) absorption of Aluminium is poor, accounting for only
about 0.1 - 0.3% of the total intake (Moore et al., 2000). The process of absorption depends on the
intraluminal speciation, the intraluminal quantity, the presence of competing (iron, calcium) or
complexing (citrate) substances and the intraluminal pH (Sjogren et al., 2007; Fernandez-Maestre,
2014) and is also promoted by many factors which include parathyroid hormone, dihydroxy
vitamin D, zinc deficiency and citrate ingestion. Under sustained exposure of the gastrointestinal
tract, or/and under certain conditions, particularly renal failure, increased aluminium accumulation

in the body can occur (Yokel and Namara, 2001).

How Ingested Aluminum Moves Through the Body:

FoodtAL ) 30, Blood-brain barrier (BBR)

Absorbed = / protects brain from Al3+
b A Y

Al3+

Aluminum rapidly
99.7% climinated excreted in urine
in feces

Aluminum has low absorption, is rapidly climinated in the urine, and does not pass the BBB. These
natural defenses are adequate to protect the brain from normal, natural levels of Al ingestion.

Figure 3: Absorption of Dietary Aluminium (Kramer and Heath, 2014)
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Absorption of dietary aluminium is affected by several factors including; gastric pH levels (for
aluminium speciation and solubility), bioavailability, diet or presence of organic acids (citrate,

lactate) (Sjogren et al., 2007; Giddings et al., 2010; Kumar and Gill, 2014).

The citric acid in fruit juices markedly increases aluminium absorption in the gastrointestinal tract
(GIT) (Glynn et al., 2001). Other short-chain carboxylic acids such as acetate, oxalate, lactate,
malate, tartrate, gluconate, ascorbate, and carbonate have also been shown to increase aluminium
absorption in animal studies (Domingo et al., 1994; Krewski et al., 2007). Dietary intake of vitamin
D increases aluminium absorption resulting in more amount of aluminium in the muscles and
hearts (Moon et al., 1992). The parathyroid hormone can also increase the absorption of aluminium

by stimulating renal synthesis of 1, 25-dihydroxy vitamin D3 (Moon et al., 1992).

Fluoride has been reported to decrease aluminium absorption (Nayak, 2002; Sjogren et al., 2007,
Fernandez, 2014) and eliminates aluminium in the urine and faeces (Glynn et al., 2001). It has
been reported that dietary intake of silicon decreases the absorption of aluminium and facilitates
its excretion (Krewski et al., 2007). Calcium and phosphate have been shown to decrease the
absorption of aluminium due to the formation of insoluble products with aluminium (Fernandez,
2014). High levels of iron decrease the intestinal absorption of aluminium by competing with
aluminium bind to the transferrin (Fernandez, 2014). Adding milk to tea infusions has been shown

to significantly decrease the bioavailability of aluminium (Milacic, 2005).
Distribution

Following the absorption of aluminium, it is subsequently distributed throughout the human body.
Aluminium has been shown to accumulate in all tissues of mammals, preferentially in kidneys,

liver, heart, bones and brain (Abubakar et al., 2002; Gonzalez et al., 2009; Bondy, 2014). The
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brain is a vital organ that accumulates aluminium in terms of exposure and contains less aluminium
than the other tissues (Nayak, 2002; Priest, 2004; Krewski et al., 2007). The total body load of

aluminium is approximately 30-50 mg (Yokel and McNamara, 2001; Priest, 2004).

The highest levels of aluminium are found in the bone and liver (Exley, 2001; Hellstrom et al.,
2008) with only 1% of the total body aluminium in the brain (Yokel and McNamara, 2001; Priest,
2004). Accumulation of aluminium in tissues and organs has been reported to result in their toxicity
and dysfunction (Walton, 2006). By overcoming the body barriers, aluminium can infiltrate the

blood and promote toxic effects in the liver, bone and the central nervous system (Klein, 2005).

Metabolism

Aluminium is not essential for the growth, reproduction, and sustainability of humans and animals
(Domingo, 2003; Exley, 2003). Its exclusion from successful biochemical pathways is mainly due
to its very low natural availability (Yokel and McNamara, 2001; Exley, 2009; Aspenstrom et al.,
2009). Aluminium is present in four different forms in the body; free ions, low molecular-weight
complexes, physically bound macromolecular complexes and covalently bound macromolecular
complexes (EFSA, 2008). Free AI** binds easily to many substances and structures, and its
metabolism is determined by its affinity to each of the ligands and their relative amounts and

metabolism (ATSDR, 2008; EFSA, 2008).

Aluminium can form low-molecular-weight complexes with organic acids, amino acids,
nucleotides, phosphates and carbohydrates (ATSDR, 2008; EFSA, 2008). These complexes are
metabolically active, particularly the non-polar ones and may be very stable. Much of the

aluminium in the body may exist as physically bound macromolecular substances such as proteins,
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polynucleotides and glycosaminoglycans. However, metabolically, these macromolecular
complexes are expected to be less active than the smaller low-molecular-weight complexes

(ATSDR, 2008; EFSA, 2008).

The mechanisms of how aluminium enters the brain are not fully known (Yokel, 2002).
Aluminium may enter the brain from the blood, either through choroid plexuses or the blood-brain
barrier (BBB); from the nasal cavity into olfactory nerves followed by direct distribution into the
brain (Abubakar et al., 2002; Yokel, 2002). Other routes through which aluminium enters the brain
and gets metabolized include; via transferrin-iron transporter, ferritin transport systems, and

displacement of magnesium (Figure 4).

When aluminium is absorbed, it reaches the blood where it is immediately bound by the iron
transporter transferrin molecule to its oxidative state (AI**) which is the same as the iron (Fe®*)
(Crichton et al., 2002), and circulates across the blood-brain barrier (Yokel and McNamara, 2001;
Bondy, 2016). Transferrin has been shown to bind about 90 % of circulating aluminium, ranging
from 80 to 94 % (Milacic et al., 2009). Aluminium bound to the transferrin molecule enters the
cell and accumulates in the area of the brain cortex that is rich in transferrin receptors (Sjogren et
al., 2007; Martinez et al., 2017). Inside the cytosol, AI** is released from the complex due to a

decrease in pH level at 5.5 (Crichton et al., 2002).
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Figure 4: Transferrin-transferrin Pathway (Crichton et al., 2002)

Excretion

Aluminium is excreted from the human body through the faeces and urine (ATSDR, 2008), though,
the main route of aluminium elimination is renal clearance (Stoehr et al., 2006). Individuals with
kidney malfunction or immature kidneys, such as nephropathy patients or neonates, might
experience toxic accumulation of aluminium in the body (Yuan et al., 2011). Excretion of
aluminium in man is primarily renal, with less than 2 % excreted in bile (Drueke, 2002). The
amount of aluminium excreted per day is extremely variable (Ezomo et al., 2009). In many studies,
1.8 - 12 mg per day has been reported according to the variations in the volume of urine excreted

by different individuals (Ezomo et al., 2009).
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Figure 5: Absorption, Distribution, Metabolism and Excretion of Aluminium (WHO, 2017).

ALUMINIUM TOXICITY

Aluminium is very harmful to nervous, osseous and hemopoietic cells (Barabasz et al., 2002;
Kochian et al., 2005). The main symptoms of aluminium toxicity in humans include; diminished
intellectual function, forgetfulness, inability to concentrate, speech and language impairment,
personality changes, altered mood, depression, dementia, visual and/or auditory impairment,
hallucinations, osteomalacia with fracturing, motor disturbances, weakness, fatigue, mainly related

to microcytic anaemia, epileptic seizures etc. (Campbell, 2000; Rengel, 2004; Bogle et al., 2006).

Aluminium toxicity is associated with various pathological conditions including anaemia (Farina

etal., 2002; Osinska et al., 2004; Lambert et al., 2010), osteomalacia (COT, 2005), obesity (Paolo
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etal., 2002; Becaria et al., 2002; Exley, 2004; Jaffe et al., 2005; Mailloux et al., 2007; Peto, 2010),
neurodegenerative disorders such as encephalopathy, Alzheimer’s disease, Parkinson's disease,
and multiple sclerosis (Nakamura et al., 2000; Rondeau et al., 2000; Mold et al., 2018),
amyotrophic lateral sclerosis (He et al., 2000; Roos et al., 2006) hepatotoxicity (Abubakar et al.,
2001; Bogdanovic et al., 2008; Tirkez et al., 2011; Geyikoglu et al., 2013), or various reproductive
disorders (Sharma et al., 2003; Guo et al., 2005; Yousef et al., 2005; Yousef et al., 2007; Guo et

al., 2009; Yousef and Salama, 2009).

NEUROTOXICITY OF ALUMINIUM

The most significant complications of aluminium toxicity are neurotoxic effects such as neuronal
atrophy in the locus ceruleus (Exley, 2012), substantia nigra and striatum (Filiz and Meral, 2007),
neuronal apoptosis in the brain (Walton, 2007; Ribes et al., 2008), and impair learning and memory
functions (Miu et al., 2003; Jing et al., 2004), problems with balance and loss of coordination
(Krewski et al., 2007). Neurotoxicity potential of aluminium has received particular attention due
to a speculated link to neurodegenerative disorders including; Alzheimer’s disease (AD),
Parkinson’s disease (PD), multiple sclerosis (MS), dialysis encephalopathy (DE) and amyotrophic
lateral sclerosis (ALS) (Kawahara, 2005; WHO, 2013). The neurotoxicity of aluminium has also
been demonstrated in humans, animal models and tissue and cell culture (Bondy, 2010; Exley and

House, 2011).
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DISORDERS LINKED TO ALUMINIUM NEUROTOXICITY

Alzheimer’s disease (AD)

Alzheimer’s disease is characterized by a progressive neurological impairment affecting several
cognitive domains, behaviour, and personality (Wang et al., 2016). Alzheimer’s disease is
accompanied by changes in cerebral functions as a result of biochemical incidents, each of which
is related to each other. Typical neuropathological signs of the disease are intracellular
neurofibrillary tangles (hyperphosphorylation of tau protein), deposition of extracellular senile
plaques (hyperphosphorylation of ABP, optimal losses of synapses and neurons in hippocampal)
and cerebral cortical regions, cortical and subcortical atrophy, and cerebrovascular amyloids

(Gupta et al., 2005; Kawahara, 2005; Sjogren et al., 2015) as in Figure 6.

Aluminium has long been implicated in the pathogenesis of Alzheimer’s disease, but the precise
mechanism of aluminium toxicity in this disease remains unknown (Gupta et al., 2005). Deposition
can occur throughout the brain, as aluminium can cross the blood-brain barrier (Roig et al., 2005;
Sanchez-lglesias et al., 2007). It is thought that genetic factors, oxidative stress, infectious factors,
and environmental factors are playing a role in AD (Gupta et al., 2005). As there is no sufficient
genetic information about AD, it is thought that environmental factors including aluminium

interact with other factors and provide a basis for the formation of the Alzheimer’s disease (Y okel,

2013).

The hypothesis, stating that aluminium was one of the environmental factors in the pathogenesis
of AD, was named as “Al hypothesis,” based on various neurotoxicological, analytical, and
epidemiological data found in the 1960s (Klato et al., 1965; Crapper et al., 1973; Martyn et al.,

1989). The beginning of the hypothesis, stating that aluminium was included in the aetiology of
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AD, is revealed by observing the neurofibrillary degeneration after the intracerebral injection of

Al into rabbit’s brain (Klato et al., 1965).

A meta-analysis of cohort studies showed a significant correlation between Al exposure and AD
risk (Neri and Hewit, 1991; Flaten, 2001). McLachlan et al. (1996) found a dose-response
correlation between an increasing concentration of Al in the drinking water (100 mg/L or greater
Al) and a higher risk of developing AD. There are several epidemiological studies of drinking

water and AD risk that have also shown dose-response effects.
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Figure 6: Mechanism of Aluminum Toxicity in Alzheimer Disease (Andrasi et al., 2005)
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Parkinson’s disease (PD)

Parkinson’s disease is a neurodegenerative disorder characterized by selective death of neurons in
substantia nigra, tremors in the face, hands and jaw, muscle rigidity, and slow physical activities
(Chan et al., 2015). Parkinson’s disease occurs as a result of the decrease of stimuli by basal
ganglia in the motor cortex, depending on the death of neurons in globus pallidus and substantia
nigra, which normally synthesizes and releases epinephrine and dopamine (Chin-Chan et al.,

2015).

The relationship between PD and Al has been demonstrated in gastric ulcer patients due to the use
of aluminium-containing antacids (Altschuler, 2000). Indirect evidence between Al and PD is the
ability of Al to activate the monoamine oxidase B; the enzyme increases with age and PD (Zata et
al., 2000). Activation of the NF-kB transcription factor and triggering of inflammatory processes
have been found to occur synergistically after simultaneous treatment of experimental animals
with a low level of Al in drinking water (Bondy, 2016). Yasui et al. (1991) found that Al
concentration in the substantia nigra, caudate nucleus, and globus pallidus was higher in PD brains

and significantly higher in gray matter and the basal ganglia.

Multiple sclerosis (MS)

Multiple sclerosis is a chronic, immune-mediated, demyelinating disease of the central nervous
system of unknown aetiology (Exley, 2013). Human exposure to aluminium is identified as a
possible contributor to multiple sclerosis (Exley, 2013). Individuals with relapsing-remitting
(RRMS) and secondary progressive (SPMS) were shown to excrete large amounts of aluminium
in their urine (Exley et al., 2006), an observation recently built upon and confirmed in individuals

with SPMS (Jones et al., 2017). Many studies indicate that aluminium can be an environmental
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factor in the aetiology of MS (Mirza et al., 2017; Mold et al., 2018). Also, the use of Al adjuvant
containing vaccines has been associated with an increased incidence of MS (Alvarez et al., 2011;

Shoenfeld et al., 2011).
Dialysis encephalopathy (DE)

Dialysis encephalopathy, first described in 1972, has emerged as a complication of prolonged
hemodialysis exposure (Alfrey et al., 1996). Patients with dialysis encephalopathy have difficulty
in speaking (dysarthria), movement planning disorder (dyspraxia), unconsciousness and psychosis
following ataxia, personality changes, myoclonic movements, electroencephalographic

abnormalities, convulsions, and dementia (Murphy et al., 1992).

In many studies, the aluminium content of the dialysis fluids of patients with encephalopathy was
found higher than 200ug/L (WHO/IPCS, 1997). However, high levels of aluminium were reported
in brain, muscle, and other tissues of dialysis encephalopathy patients (Priest, 2005). Cerebral
cortical aluminium concentrations of patients with dialysis encephalopathy were reported as 10—
25 ug/g dry brain weight (Priest, 2005). Nowadays, the exposure of dialysis patients to Al is the
minimum, as the Al level of dialysis fluid in the majority of dialysis centres is <10 pg/L (CDCP,

2007).
Amyotrophic lateral sclerosis (ALS)

Amyotrophic lateral sclerosis is a neurodegenerative disease characterized by selective motor
neuron death (Ludolph et al., 2015). Patients develop a progressive muscle phenotype
characterized by spasticity, hyperreflexia, fasciculations, muscle atrophy, paralysis, and damages

of upper and/or lower neurons (Ludolph et al., 2015).
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The deleterious effect of aluminium was firstly reported 40 years ago in an animal model with
several studies linking its presence in serum, cerebrospinal fluid (CSF) and central nervous system
(CNS) to Amyotrophic Lateral Sclerosis (ALS) (Lord et al., 2000; Kamel et al., 2005; Qureshi et

al., 2008; Roos et al., 2013).

OTHER TOXIC EFFECTS OF ALUMINIUM

Reproductive and Developmental Toxicity

Soluble aluminium compounds have demonstrated reproductive toxicity (including
histopathological changes in the testes and effect on gestation length) and developmental toxicity
(including increased pup mortality, decreased growth, delayed maturation, and impaired
neurodevelopment) in experimental animals (WHO, 2003; WHO, 2007). However, it has been
reported that the developmental toxicity of aluminium by the oral route would be highly dependent
on the form of aluminium and the presence of organic compounds that influence bioavailability

(WHO, 2003; WHO, 2007).

Studies of reproductive toxicity in male mice (intraperitoneal or subcutaneous administration of
aluminium nitrate or chloride) and rabbits (administration of aluminium chloride by gavage) have
demonstrated the ability of aluminium to cause testicular toxicity, decreased sperm quality and
reduced fertility (EFSA, 2008; FAO/WHO, 2012). Exposure to higher aluminium concentrations
significantly reduced the body weight and the weight of testes, and epididymal in mice (Mayyas,
at al., 2005) and rats (Hichem et al., 2013). These can be explained by the finding that aluminium
concentrations higher than 200 mg/| are correlated with lower levels of testosterone, the primary

androgen controlling reproductive tissue development in males (Abu-Taweel et al., 2007; Sun et
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al., 2011). Sun and collaborators (2011) found lower testosterone levels in male rats exposed to
256.72 mg/kg Al, so it is possible that testosterone disorders occurred in the 200 mg/l of the

aluminium exposure.

Spermatogenic activity, spermatogenesis, and spermiogenesis are mainly under the control of
testosterone (McLachlan et al., 2002). Their negative effect on sexual intercourse, sperm quality,
and quantity may be due to the effect of 200 mg/l dose and disturbing testosterone homeostasis
(McLachlan et al., 2002). Guo et al. (2009) suggested that aluminium induces production of
nitrogen monoxide (NO), a suppressor of circulating and testicular testosterone. Zhu et al. (2014)
also suggested that the main reason for reduced spermatogenesis in male rats was a decline in
testicular enzyme activity and an imbalance in the concentrations of other trace elements (Zn, Fe,

Cu) in the testes.

It was reported that oral administration of high doses of aluminium compounds in mice and rats
induced signs of embryotoxicity including; reduced fetal body weight or pup weight at birth and
delayed ossification (EFSA, 2008). In developmental toxicity studies, oral administration of
aluminium chloride in pregnant rats showed evidence of fetotoxicity (FAO/WHO, 2012). Poirier
et al. (2011) reported that administration of aluminium citrate in Sprague-Dawley rats, showed
signs of reproductive toxicity including; renal damage, resulting in high mortality in the male

offspring (Poirier et al., 2011).

Mutagenicity

Aluminium compounds (including aluminium chloride, sulphate, nitrate, lactate, fluoride and
pigments composed of potassium aluminium silicate) have been non-mutagenic when assessed in

bacterial and mammalian cell systems and by an in vivo rat bone marrow micronucleus test (WHO,
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2003). However, aluminium chloride produced some DNA damage and aluminium hydroxide,
aluminium sulphate and aluminium chloride produced effects on chromosome integrity and

segregation in vitro (EFSA, 2008; FAO/WHO, 2012).
Carcinogenicity and Genotoxicity

The available studies do not indicate the carcinogenic potential of aluminium for human exposure
(EFSA, 2008; FAO/WHO, 2012). Several indirect mechanisms of genotoxicity have been
proposed, which are considered unlikely to be of relevance for humans exposed to aluminium via
the diet. However, no reports have indicated that aluminium is genotoxic to human following oral

exposure (EFSA, 2008; FAO/WHO, 2012).
MECHANISM OF ALUMINIUM TOXICITY

The mechanisms of aluminium toxicity are not fully understood (Yokel et al., 2001; Krewski et
al., 2007). The toxic effects associated with aluminium are due, in most situations, to the
generation of reactive oxygen species (ROS) (Abubakar et al., 2001; Tirgut et al., 2006; Yuan et
al., 2012), disrupting biological membranes (Becaria et al., 2004; Exley, 2006; Kuma et al., 2009)

and/or DNA oxidative deterioration (EI-Demerdash et al., 2004; Sargazi et al., 2006).
Cytological changes

Aluminium toxicity can result from the interaction between aluminium and various cells including;
plasma membrane, apoplastic and symplastic targets (Kochian et al., 2005). In humans, Mg?* and
Fe3* are replaced by AI**, which causes many disturbances associated with intercellular
communication, cellular growth and secretory functions. The changes that are evoked in neurons
by aluminium are similar (Figure 7) to the degenerative lesions observed in Alzheimer patients
(Krewski et al., 2009).
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Figure 7: Mechanism of Aluminum Toxicity in the Central Nervous System (Shaw et al., 2013)

Aluminium can interfere with enzymatic activities in key metabolic pathways causing changes in
cellular functions (Zatta et al., 2000). It can inhibit the activity of hexokinase,
phosphofructokinase, and glucose-6-phosphate dehydrogenase and causing mitochondrial
dysfunction and depletion of adenosine triphosphate (ATP) (Socorro et al., 2000; Kumar et al.,

2008; Lemire et al., 2009).

Aluminium toxicity disrupts mitochondrial metabolism. Aluminium toxicity also decreases the
activity of a-ketoglutarate dehydrogenase, which leads to a decrease in the activity of prolyl
hydroxylase (PHD). This results in stabilization of hypoxia-inducible factor-lo (HIF-1a), a

transcriptional protein required for the induction of glycolytic genes.
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The Al-induced perturbation of mitochondrial function leads to the subsequent diversion of
metabolized carbohydrates towards lipid biosynthesis and triglyceride accumulation. Perturbation
of the TCA cycle prompts the accumulation of citrate, which is then exported into the cytosol and
acted upon by lipogenic enzymes to generate fatty acyl moieties. Following the esterification of
fatty acyl groups with glycerol, the triglyceride is either stored in the cytosol or exported into the
surrounding extracellular environment as VLDL. Aluminium toxicity also causes a decrease in L-

carnitine diminishing fatty acid oxidation (Figure 8).
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Figure 8: Aluminium Toxicity and Metabolic Pathways, Red or down arrows represent a decrease while green and
up arrows represent an increase (Exley and Birchall, 1992; Serviddio et al., 2011).

Aluminium interferes with several Fe-dependent enzymes within the TCA cycle and electron
transport chain (ETC), resulting in the diminished production of ATP by the mitochondria (Zatta

et al., 2000). Aluminium toxicity is also known to alter cellular nucleotide and metabolite levels
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(Murphy, 2009), ATP levels, NAD/NADH and NADP/NADPH ratios (Ying, 2008; Murphy, 2009;
Mailloux et al., 2011). Aluminium toxicity causes disruption of TCA cycle flux and oxidative
phosphorylation which alter respiration and ATP production and accumulation of NADH. Al
exposure causes a decrease of Fe-dependent enzymes such as aconitase, succinate dehydrogenase,
fumarase and complex V. Aluminium toxicity also diminishes the activity of NAD-dependent
isocitrate dehydrogenase and a-ketoglutarate dehydrogenase. Inhibition of a-ketoglutarate
dehydrogenase leads to the accumulation of a-ketoglutarate, which quenches ROS generating

succinate as a hon-enzymatic by-product as depicted in Figure 9.
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Figure 9: Metabolic Linked between Aluminium Toxicity and Fe-Dependent Enzymes within the TCA cycle and
Electron Transport Chain (ETC) (Source: Zatta et al., 2000; Ryan et al., 2011). Decreases in enzyme activity or
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Calcium lon Theory

Aluminium induces elevated and sustained levels of intracellular Ca?* with significant implications
not only for cellular energy metabolism but also uncontrolled phosphorylation of biomolecules
(Lukiw et al., 2005). The presence of biologically reactive aluminium imposes an immediate
energy requirement upon a neuron, whether simply because of the need to produce more Ca?*-
buffering proteins or because of the requirement to clean-up the consequences of
hyperphosphorylation (Lukiw et al., 2005; Exley, 2012; Khan et al., 2013). The toxic effects of
aluminium may include interference with second-messenger signalling systems in cells, including
phosphoinositol de-derived signalling and Ca?*-signalling pathways, and in the formation of lipid
peroxides (Rengel, 2004). It was reported that the impaired neural function caused by aluminium

is related to its damage to intracellular Ca?* homeostasis (Kaur and Gill, 2005).
Oxidative Stress Theory

Aluminium has been postulated to induce oxidative stress in various cell types (Oguz et al., 2001;
Abubakar et al., 2003; Gura, 2010; Yuan et al., 2012; Cheraghi et al., 2017) as shown in Figure
10. Aluminium causes the production of reactive oxygen species either by a direct pathway with
the formation of the -OOH radical or indirectly by influencing the redox equilibrium in the Fenton
reaction. Aluminium directly binds to negatively charged phospholipids, which contain
polyunsaturated fatty acids and are easily attacked by reactive oxygen species (ROS) such as Oz -

, H202, OH’, and OH- (Verstraeten et al., 1997).

Page 42 of 77



Al accumulation

4

! Enhanced ROS Antoxidants
I . : : ROS-scavenging
in mitochondria
1 enzymes
I AN
I Polyunsaturated
I fatty acids
i
; 3y
! LOOH

2-Alkenals “_@
Cell injury i -
Other aldehydes

Figure 10: Aluminium Accumulation Causes Toxicity (Berthon, 2002)
Reactive oxygen species may also cause cellular damage by oxidizing amino acid residues on
proteins, forming protein carbonyls (Chevion et al., 2000; Kowalczyk et al., 2004).

Fenton reaction

Aluminium causes the production of reactive oxygen species through the promotion of Fenton
reaction. The presence of aluminium (AI**) in the aqueous environment stabilized superoxide (O2 -

) resulting in the formation of AI**-superoxide (Al-O2")-complex.

Fe¥t + 0 <« Fe?*+ 0

l AR (Abubakar et al., 2002; 2003; 2004 and 2008)

Al-Oz-complex

The resultant AI**-superoxide complex reduced Fe®* to Fe?*, provoking the release of a neutral O

from the first solvation layer of aluminium.

Page 43 of 77



Superoxide dismutation is catalysed by SOD to produce hydrogen peroxide (H20>)
Oy + O+ 2H" ——» H20:+ 0> (Abubakar et al., 2002; 2003; 2004 and 2008)

The Fe?* from the reduced Fe3* reacts with HO- to produce the highly reactive hydroxyl radical

(HO). This is known as the Fenton reaction.
Fe’*+ H0, — Fe**+ HO + OH" (Abubakar et al., 2002; 2003; 2004 and 2008)

The reactive oxygen species generated then trigger oxidative stress, recovering the initial
aluminium hydrolytic species, which is ready again to promote a Fenton reaction cycle (Figure

11).

However, the Haber — Weiss reaction can also generate HO- in an interaction between O™ and

H202 in the presence of Fe3* [Fe?*
0,+HO, ——» HO +0OH +0 (Abubakar et al., 2002; 2003; 2004 and 2008)

Hence, one would expect that the destruction of the superoxide radicals or hydrogen peroxide by
superoxide dismutase (SOD) or catalase (CAT) respectively would diminish Al toxicity, as would

factors able to scavenge the hydroxyl radical.
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Figure 11: Diagrammatic Representation of the Relation among the Aluminium (gray), Reactive Oxygen Species
(yellow), Anti-Oxidative Enzymes (pink) and Lipid Peroxidation. TBARS=thiobarbituric acid reactive substances;
SOD=superoxidase dismutase; GPx=glutathione peroxidase (Exley, 2004; Halliwell and Gutteridge, 2007).

Genetic level (Gene Expression)

Aluminium can bind to histone-DNA complex and induce conformational changes of chromatin
and induce topological changes of DNA (Latha et al., 2002; Bharathi et al., 2003). Aluminium can
also alter gene expression by inducing decreased expression of neurofilaments and tubulin, altered
expression of genes of neurofilaments, amyloid precursor protein (APP), and neuron-specific
enolase, decreased expression of transferrin receptor, altered expression of RNA polymerase I,
altered expression of oxidative stress marker genes (SOD1, glutathione reductase, etc.), and altered

expression of B-APP secretase (Lukiw et al., 1998; Lin et al., 2008; Luo et al., 2009).

Besides a direct relationship with oxidative stress accumulation, aluminium inhibits biological
oxidative stress management systems by interfering with the glutathione S-transferase (GST)
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detoxification system (Sumathi et al., 2011; Prakash et al., 2013). GSTs are multi-gene isoenzymes
that are encoded by three separate families of genes, including cytosolic, microsomal, and
mitochondrial transferases (Josephy, 2010; Higgins and Hayes, 2011), which are involved in the
cellular detoxification of both xenobiotic and endobiotic compounds (Nebert and Vasiliou, 2004).
The human GST gene superfamily comprises eight classes: alpha, kappa, mu, omega, pi, theta,
sigma, and zeta (Josephy, 2010). Glutathione S-transferase pi (GSTP1), glutathione S-transferase
mu (GSTML1), and glutathione S-transferase theta (GSTT1) play important roles in detoxification
of xenobiotics (Rossignol et al., 2014) and polymorphisms in these genes may affect biologic

responses to aluminium.

GST genes encode enzymes that catalyze the conjugation of the reduced form of GSH to
xenobiotics, such as heavy metals, thereby reducing the toxic effects and promoting excretion of
the conjugated form of the xenobiotic (Josephy, 2010). In three studies, rodents treated with
aluminium have reduced amounts of GSH (Khanna and Nehru, 2007; Sumathi et al., 2011; Prakash
et al., 2013). The aluminium-associated GST/GSH effects observed in animal models have been
reproduced in human studies. For example, a study of industrial workers noted that people with
the highest levels of aluminium in urine also have low GST enzymatic activity in erythrocytes

(Halatek et al., 2006).
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WHAT IS KNOWN SO FAR

Aluminium is known to interfere with enzymatic activities (Zatta et al., 2000; Abubakar et al.,
2003). Aluminium inhibits the activity of hexokinase, phosphofructokinase, and glucose-6-

phosphate dehydrogenase (Socorro et al., 2000; Kumar et al., 2008; Lemire et al., 2009).

Aluminium interferes with several Fe-dependent enzymes within the TCA cycle and electron
transport chain (ETC). Aluminium inhibits the activity of Fe-dependent enzymes such as
aconitase, succinate dehydrogenase, fumarase, and complex IV. NAD-dependent isocitrate
dehydrogenase and a-ketoglutarate dehydrogenase are also inhibited by aluminium exposure

(Zatta et al., 2000; Ryan et al., 2011).

Aluminium interferes with anti-oxidative enzymes including; superoxide dismutase (SOD),
catalase (CAT), and glutathione peroxidase (GPx) (Abubakar et al., 2003; Exley, 2004; Halliwell

and Gutteridge, 2007).

Aluminium diminishes the production of adenine-triphosphate (ATP) (Zatta et al., 2000) and alters
NAD/NADH and NADP/NADPH ratios (Ying, 2008; Murphy, 2009; Mailloux et al., 2011).
Aluminium toxicity is also known to alter cellular nucleotide and metabolite levels (Murphy,

2009).

Aluminium interferes with biochemical processes requiring metal ions such as Fe**, Mg?*, and
Ca?* causes changes in intercellular communication, cellular growth and secretory functions.

(Krewski et al., 2009).

Aluminium interferes with second-messenger signalling systems in cells, including
phosphoinositide-derived signalling (Rengel, 2004) and Ca?*-signalling pathways (Rengel, 2004;
Kaur and Gill, 2005), and in the formation of lipid peroxides (Rengel, 2004).
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Aluminium is known to binds histone-DNA complex and induces conformational changes of

chromatin and topological changes of DNA (Latha et al., 2002; Bharathi et al., 2003).

Aluminium alters gene expression by inducing decreased expression of neurofilaments, tubulin,
and transferrin receptor, and altered expression of RNA polymerase I, and $-APP secretase (Lukiw

etal., 1998; Lin et al., 2008; Luo et al., 2009).

Aluminium form low-molecular-weight complexes with organic acids, amino acids, nucleotides,

phosphates and carbohydrates (EFSA, 2008; Metthew et al., 2019).

Aluminium toxicity is associated with various pathological conditions including anaemia (Farina
et al., 2002; Osinska et al., 2004; Lambert et al., 2010), osteomalacia (COT, 2005), obesity (Paolo
etal., 2002; Becaria et al., 2002; Exley, 2004; Jaffe et al., 2005; Mailloux et al., 2007; Peto, 2010),
neurodegenerative disorders such as Alzheimer’s disease, Parkinson's disease, multiple sclerosis
and encephalopathy (Nakamura et al., 2000; Rondeau et al., 2000; Mold et al., 2018), amyotrophic
lateral sclerosis (He et al., 2000; Roos et al., 2006) hepatotoxicity (Abubakar et al., 2001,
Bogdanovic et al., 2008; Tirkez et al., 2011; Geyikoglu et al., 2013), or diverse reproductive
disorders (Sharma et al., 2003; Guo et al., 2005; Yousef et al., 2005; Yousef et al., 2007; Guo et

al., 2009; Yousef and Salama, 2009).

In conclusion, it is not surprising to find that aluminium is a powerful inhibitor of many

biochemical processes requiring metal ions, resulting in so many neurodegenerative diseases.
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POSSIBLE INTERVENTION OF AI-TOXICITY

Interaction with;

e Desferrioxamine
e Magnesium
e Selenium

e Antioxidants such as Vitamin E, C, or A

(Abubakar et al., 2002; 2003; 2004 and 2008)

PROBLEMS

The air we breathe, the water we drink, and the food we eat are the primary sources of aluminium

(Yokel and McNamara, 2001; ATSDR, 2010).

Pharmaceutical preparations such as antacids, phosphate binders, buffered aspirins, adjuvant, and
therapeutic vaccines or antiperspirants are the common sources of aluminium (Reinke et al., 2003;

Krewski et al., 2007; ATSDR, 2008)

Aluminium is also found in some food products including food additives (processed cheese, baked
goods, jellyfish, fried twisted cruller, or microalgal supplements) (Rzymski et al., 2015; Zhang et
al., 2016; Rzymsk et al., 2018) food packagings, emulsifying cheeses, and binding meats (Krewski

et al., 2007; ATSDR, 2008; Yokel et al., 2008)

Human consumed excess (10 mg/day) aluminium from all products with a unique challenge to

maintain recommended daily intake to avoid accumulation to its toxic levels (Vargel, 2004).

Exposure to aluminium in human is significantly increased by various activities which include

specific industrial and agriculture occupations, first-hand and second-hand smoking, and the use
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of recreational drugs; such as heroin or cocaine (Rzymski et al., 2015; Zhang et al., 2016; Rzymski

et al., 2018).

Prolong aluminium exposure induces oxidative stress and pathological alterations in diverse areas

of the brain (Abubakar et al., 2004; Yuan et al., 2012).

Neurotoxicity potential for aluminium has been linked to neurodegenerative disorders including;
Alzheimer’s disease (AD), Parkinson’s disease (PD), multiple sclerosis (MS), dialysis

encephalopathy (DE) and amyotrophic lateral sclerosis (ALS) (Kawahara, 2005; WHO, 2013).
MY CONTRIBUTION

Understanding specific problems related to the mechanisms of Al-induced neurotoxicity from an

oxidative stress point of view.

Focusing on the possible role of the protective agents like Mg?* & Se and vitamins C & E in the
modification of toxicity (Abubakar et al., 2002; 2003; 2004 and 2008). It is particularly thought

that these substances may have some antagonistic effect on the expression of Al-induced toxicity
METHODS AND TECHNIQUES UTILISED

e Plasma vitamin E was measured by HPLC as previously described (Ferns et al., 2000).
e Aluminium concentrations were determined by atomic absorption spectrometry, as

previously described (Taylor & Walker, 1992).
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This in vivo study was designed to investigate the potential of aluminium (Al), in the absence of added
iron, to participate in either antioxidant or pro-oxidant events. Some markers of oxidative stress were
determined in liver and brain of rats exposed to aluminium lactate, either alone or in the presence of
dietary supplements of selenium (se) as selenite. Exposure to aluminium for 21 days resulted in a
statistically significant (P<0.05) decrease in brain glutathione. However, a non-significant increase in
hepatic glutathione was observed in animals supplemented with either Se or Al, but Al in combination
with Se prevented this elevation. In the brain a statistically non-significant increase (P>0.05) was
observed in the GSH content. Contrary to what is known, Al exposure resulted in statistically significant
decrease (P<0.001) in lipid peroxidation as measured by production of malondialdehyde in both liver
and brain. Aluminium exposure had no significant effect on the liver and brain superoxide dismutase
activity. Results of the present study suggest that in rat aluminium exposure may have both pro-oxidant
and antioxidant effect. Furthermore, Se supplementation may offer some protection against aluminium
toxicity but this needs to be further elucidated.

Key words: Aluminium, selenium, rat, brain, liver, antioxidant enzymes.

INTRODUCTION

Long-term haemo-dialysis using fluids containing
aluminium has been associated with encephalopathy
(Alfrey et al., 1976), oesteomalacia (Parkinson et al.,
1979) and anaemia (Elliott et al., 1978) due to aluminium
toxicity. Dialysis dementia is characterised by speech
disorders, myoclonus, coma and possibly death

*Corresponding author. E-mail: magusau@hotmail.com.

(McMillan et al., 1993). In experimental models of
aluminium  toxicity, encephalopathy, nerve cell
degeneration, demyelination of the brain stem cells, and
impaired motor co-ordination are observed (Ebina et al.,
1984). Cerebral accumulation of aluminium has also
been reported in several other neuro-pathological
disorders including Alzheimer's disease (Good et al.,
1992; Lukiw, 1997; Perl and Brondy, 1980), Down's
syndrome (Crapper et al., 1873), amylotrophic lateral
sclerosis (Gadjusek and Salazer, 1982; Perl et al., 1982)
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Effect of Aluminium Toxicity on Primary Cortical
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ANTIOEIDANT ROLE OF VITAMIN C IN ALUMINUM INDUCED OXIDATIVE STRESS
IN RAT BRAIM

Ay Abbas Shu'asiba. M. and Abubakar, M. G,
Deparment of Biochemistry, Usmanu Danfodivo University, PMB 2348 Sokoto Migeria.

Alumanium s naburally occurming metal thet has been utilized by human for a wery kong
time. n recent years, aluminium saits have been suspected of playing role n neuro-
degenerative disorders, such &s Alzheimer's and parkinson's diseass and prompbed
concerns aboul aluminium contarmination from aluminium cooking utensils and use of
alum 1o trest drinking wabsr supply that could lead to tosicity. The present study
Investigates the anbockdant role of vitarmin © in aluminium nduced ossdative stress inorat
prain. Experimental rats were randomily divided into six groups {(n=Sigroup). Groups of
rats wese exposune shemindum chilonde 10 mg per kg body welght with or withouwt vitamin
C supplamentation. for 291 days. The resulls obltained showed a statistically ssgnificant
{F=0US) increase n Aluminéum blood levels and decrease in glutatheone kevel in the
prain and blood in rat rested with aluminum alone_. . Bul e groups sugglemanted with
wanus conceniration of vitamin C showed significant (P<0.05) decrease in aluminium
concentretion companed o the sheminiom alone reated groug, and & ssgnificant
increase (F<DOS) in brain and plasma glulsthions content. The supplermentation also
resulied in significant increase (F-<D.05) in plaama protein in vitamin © weated groups
companed bo aluminium alone meated group. A significant decreese was also obsarved

) on malondiabdehyde kesel in Dot lver snd brain of the rat. Supplemantad with
witarnin © companed 1o controd and aluminéem alone reated groups. Therefore, from this
atudy. it was demonstrated that vitamdn © may confer protection against aluminium
induced oakdaiive SIress.

Keywords: Alumium, Vitamdn ©, Glutathéone, Malondialdehyde
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15 Dietary Vitamin E Reduces Plasma and Liver Markers of Oxidant Stress in the Aluminium
Treated Rat.

M, G. Abubaku, A. Taylor, and G. A. Ferns School of Biomedical & Life Sciences,
University of Surrey, Guild ford, Surrey GU2 7XH UK.

Aluminium (Al) toxicity may be mediated in part via reactive oxygen species (ROS). We have
investigated the effects of the antioxidant vitamin E on Al-induced effects on the liver using male
Wistar albino rats. A1 was administered i.p. as aluminium lactate (10 mg/Kg body weight) 5 times
a week for 4 weeks. Groups (n=5 each) were either treated with aluminium alone, or with a dietary
supplement of 5, 15, and 20 mg/g, of vitamin E. Further groups received 20 mg/g vitamin E
supplemented diet or normal chow without Al. Following treatment, the animals were killed and,
the liver and blood removed for measurement of aluminium and markers of oxidative stress.

Al treatment caused a significant increase in aluminium content of plasma (P< 0.001) and liver

(P< 0.001) in all groups. Liver ROS were significantly higher (P<O.ol) in the Al-treated groups
and this was significantly attenuated (P<0.05) in the vitamin E treated groups. The aluminium-
induced increase in ROS was associated with a significant reduction (P<0.05) in liver reduced
glutathione levels and also a reduction of hepatic catalase activity. Hence aluminium
hepatotoxicity may involve oxidative stress; reduced glu- tathione may serve as a defence
mechanism in aluminium exposure and dietary vitamin E supplementation may offer further
protection. Keywords: aluminium, vitamin E, rat, liver, reactive oxygen species.

© 2002 Biochemical Society
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SUMMARY

Al*® interfere/complex or bind/inhibit with several endogenous physiological substances. Many
basic theoretical and experimental pieces of evidence have shown the involvement of Aluminium
in many diseases. The biochemical processes and molecular mechanism (s) via which Al*3 exert
its toxicity in the biological system, particularly its potency often-selective neurotoxicity, are yet

to be fully understood.

POTENTIAL BENEFITS OF THE RESEARCH

Aluminium neurodegenerative disorders have for a very long time affected several individuals,

particularly the elderly and patient with chronic renal failure.

This research contributes enormously towards alleviating the personal suffering, medical, financial

and social burdens encountered by individuals or likely to be encountered in the near future.

CONCLUSION

‘ALUMINIUM TO EAT OR NOT TO EAT’ is entirely an individual decision. However, as an
expert, my advice is to utilise any aluminium and aluminium containing substances in moderate
amount. Because “ALL SUBSTANCES ARE POISONOUS, THERE IS NONE THAT IS NOT
A POISON. THE ONLY THING THAT DIFFERENTIATES A POISON FROM NON-POISON

IS THE AMOUNT” SO THEREFORE BE SAFE AND EAT WISELY
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